Tuesday, July 30, 2019

Johann Carl Friedrich Gauss

Carl Friedrich Gauss
Johann Carl Friedrich Gauss  was a German mathematician and physicist who made significant contributions to many fields in mathematics and sciences. Gauss’s first significant discovery, in 1792, was that a regular polygon of 17 sides can be constructed by ruler and compass alone. Its significance lies not in the result but in the proof, which rested on a profound analysis of the factorization of polynomial equations and opened the door to later ideas of Galois theory.


Johann Carl Friedrich Gauss
Born : 30 April 1777 in Brunswick. 
Died: February 23, 1855


Gauss’s recognition as a truly remarkable talent, though, resulted from two major publications in 1801. Foremost was his publication of the first systematic textbook on algebraic number theory, Disquisitiones Arithmeticae. This book begins with the first account of modular arithmetic, gives a thorough account of the solutions of quadratic polynomials in two variables in integers, and ends with the theory of factorization mentioned above. This choice of topics and its natural generalizations set the agenda in number theory for much of the 19th century, and Gauss’s continuing interest in the subject spurred much research, especially in German universities.
The second publication was his rediscovery of the asteroid Ceres. Its original discovery, by the Italian astronomer Giuseppe Piazzi in 1800, had caused a sensation, but it vanished behind the Sun before enough observations could be taken to calculate its orbit with sufficient accuracy to know where it would reappear. Many astronomers competed for the honour of finding it again, but Gauss won. His success rested on a novel method for dealing with errors in observations, today called the method of least squares.
Gauss published works on number theory, the mathematical theory of map construction, and many other subjects. In the 1830s he became interested in terrestrial magnetism and participated in the first worldwide survey of the Earth’s magnetic field (to measure it, he invented the magnetometer). With his Göttingen colleague, the physicist Wilhelm Weber, he made the first electric telegraph, but a certain parochialism prevented him from pursuing the invention energetically. Instead, he drew important mathematical consequences from this work for what is today called potential theory, an important branch of mathematical physics arising in the study of electromagnetism and gravitation. Gauss also wrote on cartography, the theory of map projections. For his study of angle-preserving maps, he was awarded the prize of the Danish Academy of Sciences in 1823. Another topic on which Gauss largely concealed his ideas from his contemporaries was elliptic functions. He published an account in 1812 of an interesting infinite series, and he wrote but did not publish an account of the differential equation that the infinite series satisfies. He showed that the series, called the hypergeometric series, can be used to define many familiar and many new functions. But by then he knew how to use the differential equation to produce a very general theory of elliptic functions and to free the theory entirely from its origins in the theory of elliptic integrals. After Gauss’s death in 1855, the discovery of so many novel ideas among his unpublished papers extended his influence well into the remainder of the century.

No comments:

Post a Comment

5th Issue

Students India

Students India

6th Issue